Borophenes made easy: Distinct polymorphs and heterostructures

Marc G. Cuxart1, Knud Seufert1, Valeria Chesnyak1, Wajahat A. Waqas1, Anton Robert2, Marie-Laure Bocquet2, Georg S. Duesberg3, Hermann Sachdev3, Willi Auwärter1

1 Physics Department E20, Technical University of Munich, Germany
2 Département de Chimie, Ecole Normale Supérieure, France
3 Fakultät für Elektrotechnik und Informationstechnik, Universität der Bundeswehr München, Germany

\textit{e-mail: marc.gonzalez-cuxart@tum.de}

\textbf{Abstract:}

Surface-supported two-dimensional (2D) materials keep attracting considerable interest. For example, borophene, a synthetic, boron-based 2D material, offers intriguing anisotropic electronic and mechanical properties \cite{1,2}. Here, we present a versatile chemical vapor deposition (CVD) approach to grow atomically-thin 2D polymorphs of borophene by using diborane. This precursor originates from byproducts of commercial borazine, a popular material for growth of hexagonal boron nitride (hBN). Specifically, borophene polymorphs with large single-crystalline domains are synthesized on Cu(111) and Ir(111) supports. Additionally, atomically-precise lateral interfaces or vertical van der Waals heterostructures combining borophene and hBN can be achieved by sequentially dosing different precursors from the same supply (Fig. 1). Thereby, borophene is protected from immediate oxidation by encapsulation with a single hBN overlayer. The borophene polymorphs and interfaces with hBN are comprehensively characterized by low-temperature scanning tunneling microscopy and spectroscopy, x-ray photoelectron spectroscopy, low energy electron diffraction and complementary density functional theory modeling \cite{3}. The ability to synthesize high-quality borophenes by a straight-forward, scalable CVD approach opens up opportunities for the study of their fundamental properties and for device incorporation.

\textbf{Fig. 1.} Scheme (left panel) and atomically-resolved STM image (right panel) of a vertical heterostructure with h-BN covering borophene on Ir(111).

\textbf{References:}